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For lattice systems under high temperatures T with compact or finite spin we
construct three invariant subspaces of the transfer-matrix, which can be inter-
preted as the spaces of states for quasi-particles of two different species and the
space of states for two particles of the first species. We formulate a condition on
a priori distribution guaranteeing that the spectrum of the transfer-matrix on
these subspaces are not overlapping.
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1. INTRODUCTION AND MAIN RESULTS

We consider a Gibbs spin field on the lattice Zd+1=Zd×Z (‘‘space’’×
‘‘time’’) with a nearest neighbor interaction. The spin takes values from a
compact set S … R1, and let n be a priori spin probability distribution on S.
The stochastic operatorT of the corresponding Markov chain is known as
the transfer-matrix. It is a self-adjoint operator in a corresponding Hilbert
space H. The goal of the paper is to study the structure of the leading
invariant subspaces of the transfer-matrix and to find the corresponding
upper branches of the spectrum of the transfer-matrix (or what is the same,
the lower spectrum branches of the Hamiltonian H=− 12 lnT

2 associated
with a lattice quantum system) under high temperatures T=b−1± 1.
Our constructions are the following. An invariant subspace H1 …H

with the corresponding transfer-matrix spectrum of the order b is found



first. The subspace H1 has the following structure. There exists an ortho-
normal basis {ux, x ¥ Zd} in H1. The elements of the basis are marked
by points of the lattice Zd, and Usux=ux+s for any x, s ¥ Zd, where
{Us, s ¥ Zd} is the unitary group of the space translations acting in H.
Hence the subspace H1 is cyclic under the unitary group {Us, s ¥ Zd}, and
it is similar by the structure to a space of quasi-particle states in physics.
For this reason we call H1 as the one-particle invariant subspace of the
transfer-matrix. Let us note that after the Fourier transform

ux Q exp{i(l, x)}, x ¥ Zd, l ¥ Td

we get the unitary transformation of the space H1 to the Hilbert space
L2(Td) of functions defined on a d-dimensional torus Td. Here Td is the
space of quasi-momentum of our ‘‘particle.’’ In this case the transfer-
matrix is unitary equivalent to the operator of the multiplication by a
function c(l), l ¥ Td, and the energy of the ‘‘particle’’ is determined by
− 12 ln c

2(l).
Next we construct an invariant subspace H2, such that the transfer-

matrix spectrum onH2 has the order b2 and in the orthogonal complement
to the sum of subspaces H0 ÀH1 ÀH2, where H0={1} is the space of
constants, the transfer-matrix spectrum has the order b3. Therefore our
constructions imply that the whole spectrum of T of the order b2 is the
same as the spectrum ofT restricted toH2.
Then we prove, that under a certain condition on a priori distribution

n (non-even, in general) on S with #S > 2 the invariant subspaceH2 could
be decomposed into an orthogonal sum of subspaces

H2=H (1)
2 ÀH (2)

2 , (1)

and the spectra ofT on these subspaces are not overlapping:

s(T|H(1)
2
) 5 s(T|H(2)

2
)=”. (2)

Both subspaces in (1) are invariant with respect toT and the unitary group
of the space translations {Us, s ¥ Zd}. The subspace H

(2)
2 has a so-called

two-particle structure, it describes states of two particles of the first species,
associated with the subspaceH1. The subspaceH

(1)
2 has a structure, which

is completely similar to the structure of the one-particle subspace H1. The
decomposition (1) together with the spectral analysis of the transfer-matrix
on the subspacesH (j)

2 (j=1, 2) are the main results of the paper.
As follows from our constructions below, the spectrum branch

s(T|H(1)
2
) can be found both above and below to the spectrum branch

s(T|H(2)
2
). This fact together with the internal one-particle structure of the

886 Minlos and Zhizhina



subspace H(1)
2 is the main reason, why we propose to interpret both of H1

andH(1)
2 as the spaces of states for different species of quasi-particles. Let us

note that the interpretation ofH(1)
2 carries a purely terminology convention.

Many authors propose to consider bound states of two, three, etc. particles
as states of a new single particle, and our results confirm this standpoint.
This paper is inspired by refs. 1 and 2, where the similar results have

been obtained using the Bethe–Salpeter equation method. However, the
spectrum of T|H(1)

2
was found in refs. 1 and 2 only in the case, when it lies

strictly above to the spectrum of T|H(2)
2
. We don’t impose here this restric-

tion, but we need the compactness of the spin space S (since cluster esti-
mates, obtained in refs. 3 and 4, hold true only in the case of a compact
spin space).
Let us remark, that in the general case the structure of the two-particle

invariant subspace H (2)
2 can be complex. It can contain by itself some

additional two-particle bound states, associated with values of the quasi-
momentum running some regions of the torus Td, see, for example, ref. 5.
Here we don’t consider the problem of the existence of these two-particle
bound states of the operator T|H(2)

2
. This problem requires a more detailed

spectral analysis of the transfer-matrix. A partial case, when S={−1, 0, 1}
and n is a symmetrical distribution on S, was studied in ref. 6, where the
authors found the spectrum of T|H2 completely, including two-particle
bound states.
The problem of the existence of two-particle bound states has been

considered also in quantum field theories. This problem was studied in
weakly coupled P(j)2 quantum field models by many authors, see, for
instance, refs. 7–9. The results as well as the methods of the papers of
refs. 7–9 are different from the results and approaches of this work. Con-
tinuous quantum field models are considered as perturbations of the
Gaussian field. The Gaussian field is associated with a ‘‘free system,’’ and
the spectrum of the Hamiltonian of the quantum system appears to be
close by the structure to the spectrum of the Hamiltonian of the ‘‘free
system.’’ In our paper we study perturbations of an independent (non-
interacting) field, resulting in a different structure for the spectrum of the
transfer-matrix.
We now describe the model and state results. Let (S, n) be a single spin

space. Here S … R is a compact subset of R and n is a priori probability
distribution on S. We suppose that

supp n=S, and #S > 2. (3)

Denote by W=SZ
d+1
the space of configurations

s={s(x), x ¥ Zd+1}, s(x) ¥ S,
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and let

m0=nZ
d+1

be the free measure on W. The formal Hamiltonian of the system has the
following form:

H(s)=− C
x, xŒ ¥ Zd

|x−xŒ|=1

s(x) ·s(xŒ).

We consider here the high temperatures case, when b=T−1° 1. The
corresponding Gibbs measure on W is denoted by mb.
Let ed+1 be the unit vector along the ‘‘time’’ direction, and

Yk={x=(x1,..., xd+1) ¥ Zd+1 : xd+1=k} … Zd+1

is the kth ‘‘time slice,’’ k ¥ Z. Every configuration s ¥ W can be written as a
sequence

s={..., s−1, s0, s1, s2,...}, (4)

where sk=s|Yk ¥ S
Zd — W0. In addition mb is the distribution of a stationary

Markov chain (4) with the state space W0 and the invariant measure
pb=mb |S0 , where S0 is a s-algebra generated by W0. The stochastic opera-
tor T of this Markov chain is called the transfer-matrix of the system. The
operator T acts in the Hilbert space H=L2(W0, pb) … L2(W, mb) of func-
tions dependent only on the configuration s0 ¥ W0. The matrix elements of
T could be written as:

(Tf, g)=Of(s1) · g(s0)Pmb , f, g ¥H. (5)

We formulate now the main result of the paper. Let mk=OskPn be the
kth moment of s, and the orthogonal complement inH to the subspace of
constants H0={1} …H is designated as HŒ=HıH0. We consider two
elements fromHŒ:

s−m1, s2−m2,

and define their second moments:

I1=O(s−m1)2Pn=m2−m
2
1,

I2=O(s2−m2)2Pn=m4−m
2
2,

I1, 2=O(s−m1)(s2−m2)Pn=m3−m1m2.

(6)
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From our assumption (3) it easy follows that

I1 > 0, I2 > 0, I1I2−I
2
1, 2 > 0

Let us denote by

d1=I1, d2=I2−
I21, 2
I1
> 0, (7)

then the following theorem holds.

Theorem. Let b > 0 be small enough, and

d21 ]
1
2 d2. (8)

Then the space HŒ could be decomposed into direct sum of mutually
orthogonal subspaces:

HŒ=H1 ÀH (1)
2 ÀH (2)

2 ÀH3, (9)

which are invariant with respect to the transfer-matrix T and the unitary
group of the space translations {Us, s ¥ Zd}.
The spectra ofT on these subspaces are not overlapping and meet the

following conditions:

s(T|H1 ) … (d1b−c1b
2, d1b+c1b2),

s(T|H(1)
2
) … (12 d2b

2−c2b3,
1
2 d2b

2+c2b3),

s(T|H(2)
2
) … (d21b

2−c3b3, d
2
1b
2+c3b3),

s(T|H3 ) … (−c4b
3, c4b3)

(10)

with absolute constants ci > 0, i=1, 2, 3, 4.

The proof of the theorem is based on the general approach to the
investigation of leading branches of the transfer-matrix spectrum for lattice
systems, which has been developed in the books of refs. 3 and 10. Here we
will essentially use results and constructions from these books.

Remark. We study here the ferromagnetic (b > 0) lattice spin
systems. However the similar results hold also for any small b. In the
general case we have the same decomposition as (9), but the corresponding
spectrum branches (10) could be found on both sides of the origin.

Leading Branches of the Transfer-Matrix Spectrum 889



2. PRELIMINARY CONSTRUCTIONS

We remind here shortly main steps from refs. 3 and 4, constructing the
invariant subspaces of the transfer-matrix.

2.1. A Multiplicative Basis inHŒ

We denote by {vk, k=0, 1, 2,...} a finite or countable orthonormal
basis in the space h=L2(S, dn), which is a result of the orthogonalization
in h of the monoms 1, s, s2,.... In particular, v0=1 and v1 ] 0, v2 ] 0:

v1=
s−m1
`d1

, v2=
s2−m2−

I1, 2
I1
(s−m1)

`d2
, (11)

where the constants I1, I1, 2, d1, d2 are defined above by (6) and (7).
Then we could construct an orthonormal in H system of the functions
{ṽxk=ṽ

x
k(s0), k=0, 1, 2,..., x ¥ Y0}, using the same reasoning as in ref. 3.

These functions appears to be a small perturbation of the functions {vk},
and the following representation holds:

ṽxk(s)=vk(s(x))+w
x
k(s), ṽx0=1, s ¥ W0, (12)

and

|wxk(s)| < Cb,

C is an absolute constant. Let C={k(x), x ¥ Zd}, k(x) \ 0 are nonnegative
integer-value functions with finite support (multi-indexes), then the functions

kC= D
x ¥ Zd

ṽxk(x), supp C ]”, (13)

form an orthonormal basis inHŒ.

2.2. Cluster Expansion for the Matrix Elements ofT in the

Basis {kC }

Using (5), the structure (13) of the orthonormal basis and the general
expression for moments of random variables by its semi-invariants (see, for
example, ref. 10) we obtain the following representation for the matrix
elements of the transfer-matrix in the basis {kC}, supp C ]”:

(TkC, kCŒ)=OkC(s1) ·kCŒ(s0)Pmb= C
(D1,..., Dn)=(C, CŒ)

wD1wD2 · · ·wDn . (14)
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Here C={k(x), x ¥ Zd}, CŒ={kŒ(y), y ¥ Zd},

wD=w(C, CŒ)=7 DŒ
x ¥ Zd

ṽxk(x)(s1), DŒ
y ¥ Zd

ṽykŒ(y)(s0)8
mb

(15)

is a semi-invariant for the functions of the form (12). The summation in
(14) is over all partitions (D1,..., Dn) of the pair (C, CŒ) on subpairs
Di=(Ci, C

−

i), such that

(1) supp Ci ]”, supp C −

i ]”,

(2) supp Ci 5 supp Cj=”, supp C −

i 5 supp C −

j=”, i ] j,

(3) 0
i
supp Ci=supp C, 0

i
supp C −

i=supp CŒ,

(4) Ci(x)=k(x), x ¥ supp Ci, C −

i(y)=kŒ(y); y ¥ supp C −

i

(16)

2.3. Cluster Estimates

Let us consider a multi-index C with support on Y1, C={k(x), x ¥ Y1},
and supp CŒ … Y0 as before: CŒ={kŒ(y), y ¥ Y0}. The semi-invariants (15)
satisfy the following estimates:

|wD | < B(Cb)o(D), D=(C, CŒ), supp C … Y1, supp CŒ … Y0 (17)

with absolute constants B, C, and

o(D)=min
F

1C
b

F(b)2 , (18)

where F={F(b)} is a nonnegative integer-value function defined on the
bonds b of the lattice Zd+1. The function F meets the following conditions:

(1) supp F is a connected sub-graph of the lattice Zd+1;

(2) for any point x ¥ Y1 2 Y0

C
b: x ¥ “b

F(b) \ ˛k(x), x ¥ Y1,

kŒ(x), x ¥ Y0,
(19)

with C={k(x), x ¥ Y1}, CŒ={kŒ(x), x ¥ Y0}. A set of vertices of the bond b
is denoted by “b.

Leading Branches of the Transfer-Matrix Spectrum 891



The representation (14) together with (17)–(19) imply the following
estimate on the matrix elements of the operatorT adapted to our case. Let
us consider a function t(D) defined on the pairs D=(C, CŒ), supp C … Y1,
supp CŒ … Y0:

t(D)=d(D)+
1
2
5 C
x ¥ Y1

(k(x)−n(x))++ C
x ¥ Y0

(kŒ(x)−n(x))+6
ev

(20)

Here d(D) is the length of the minimal connected subgraph y on the lattice
Zd+1, such that

supp C 2 supp CŒ … “y,

and n(x) is a degree of the point x ¥ “y, n(x)=#{b ¥ y : x ¥ “b}, (m)+=

max{0, m}, [M]ev=˛M, if M is even,
M+1, if M is odd.

We denote by

t(C, CŒ)= min
(D1, D2,..., Dn)

C
n

i=1
t(Di), (21)

where the minimum is taken over all partitions (16) of the pair (C, CŒ).
Then the following estimate holds:

|(TkC, kCŒ)| < B(Cb)t(C, CŒ) (22)

with absolute constants B, C.

2.4. The General Construction of Invariant Subspaces

Let a Hilbert spaceH is decomposed into a direct sum of orthogonal
subspaces

H=R1 ÀR2 (23)

Then the decomposition (23) implies the following matrix representation
for any bounded self-adjoint operator L:

L=RL11 L12
L21 L22
S (24)

with L i j: Rj QRi, i, j=1, 2. We’ll formulate below conditions, which
guarantee the existence of a unique invariant subspace H1 …H of the
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operator L, ‘‘close’’ to the subspace R1 in the sense that the subspace H1
has the form of the graph

H1={w: w=v+Sv, v ¥R1} (25)

of an operatorS: R1 QR2 with a small norm ||S||.

Lemma 1. We suppose that there exists a bounded operator L−111 ,
and

(1) ||L22 || · ||L
−1
11 ||=q < 1,

(2) ||L21 || · ||L
−1
11 ||=||L12 || · ||L

−1
11 ||=e <

1−q
2
.

(26)

Then for d= 2e
1−q there exists a unique invariant subspace H1 …H of the

form (25) with ||S|| < d.

Proof. The condition of the invariance for H1 with respect to L
could be rewritten using (24) and (25) by the following way:

S(L11+L12S)=L21+L22S

or

S=L21L
−1
11+L22SL

−1
11 −SL12SL

−1
11 —F(S). (27)

The right-hand side of Eq. (27) could be considered as a transformation

F:L(R1, R2)QL(R1, R2)

in the space of bounded operators from R1 to R2. It is easy to check that a
ball inL(R1, R2) of the size d= 2e

1−q :

Bd={S ¥L(R1, R2) : ||S|| < d}

is invariant with respect to the transformation F. In addition F is a con-
traction on Bd:

||F(S1)−F(S2)|| [ k||S1−S2 || with k < 1 for any S1, S2 ¥Bd.

Consequently, Eq. (27) has a unique solution inside Bd.
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Corollary 1. If U is a unitary operator in H commuting with the
operator L, such that R1 and R2 are invariant with respect to U, then
under conditions of Lemma 1 the subspace H1 (25) is also invariant with
respect to U.

This statement follows from the observation that if S ¥Bd is the solu-
tion of (27), then the operator USU−1 also satisfies Eq. (27), and
USU−1 ¥Bd. Hence USU−1=S, i.e., U commutes with S, and the subspace
H1 is invariant with respect to U.

Corollary 2. If {va, a ¥ A} is an orthonormal basis in R1, marked by
elements of a set A, then functions

ua= C
aŒ ¥ A
(ER1
+SgS)−1/2a, aŒ (vaŒ+SvaŒ) (28)

form an orthonormal basis in the invariant subspace H1. Here ER1
is the

identical operator in R1, Sg: R2 QR1 is the conjugate operator to S, and
we denote by Ka, aŒ matrix elements of an operator K: R1 QR1 in the basis
{va}.

Corollary 3. For any function g=v+Sv ¥H1, v ¥R1 we have

Lg=(L11+L12S) v+S(L11+L12S) v, (29)

so that the operator L|H1 is similar to the operator (L11+L12S) acting
in R1:

(ER1
+S)−1 L(ER1

+S)=L11+L12S

where (ER1
+S)−1:H1 QR1 is the inverse operator to (ER1

+S):R1 QH1.

Corollary 4. The orthogonal complement toH1

H+
1=HıH1

is also invariant with respect to L. Similar reasoning shows that the sub-
spaceH+

1 is the same as the graph of the operator (−S
g): R2 QR1

H+
1={f: f=u−S

gu, u ¥R2} (30)

By analogy with (28), functions

wb= C
bŒ ¥ B
(ER2
+SSg)−1/2b, bŒ (ubŒ−S

gubŒ) (31)
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form an orthonormal basis in H+
1 , where {ub, b ¥ B} is an orthonormal

basis in R2.
Since for any function f=u−Sgu ¥H+

1 , u ¥R2 we have

Lf=(L22−L21Sg) u−Sg(L22−L21Sg) u, (32)

then the operator L|H+
1
is similar to the operator (L22−L21Sg) in R2.

3. THE INVARIANT SUBSPACEH1

In this section we start to prove the main theorem using the above
constructions. The first step of the proof is to find the invariant subspace
H1 …HŒ. According to the reasoning of the previous section, we consider a
decomposition of our Hilbert spaceHŒ on two orthogonal subspaces:

HŒ=R1 À R2, R1 + R2. (33)

Here R1 is the linear span of the functions of the form (12) with k=1:

R1={kC(s0), |C|=1} — {ṽ
x
1(s0), x ¥ Y0} (34)

(so that the functions ṽx1 , x ¥ Y0 form the basis in R1), and

R2={kC(s0), |C| \ 2}

with

|C|=C
x
k(x) for C={k(x), x ¥ Zd}.

The decomposition (33) implies the matrix representation for the transfer-
matrix

T=RT11 T12

T21 T22

S (35)

withTi, j: Rj Q Ri, i, j=1, 2. Then the following estimates hold.

Lemma 2. For small enough b the operatorT−1
11 exists, and

||T−1
11 || [

2
d1b
, (36)

where d1 was defined by (7).
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In addition

max{||T12 ||, ||T21 ||, ||T22 ||} [ C1b2 (37)

with an absolute constant C1.

The proof of Lemma 2 is given in Appendix A.
Applying now Lemma 1 to the decompositions (33) and (35) together

with the estimates (36) and (37) we construct an invariant with respect
to T subspace H1 …HŒ of the form (25). The corresponding operator
S: R1 Q R2 meets the following estimate:

||S|| < Cb, (38)

with an absolute constant C.
Since the representations of the space translations {Us, s ¥ Zd} form

the group of unitary operators commuting with T, and the subspaces
R1, R2 in (33) are invariant with respect to Us, then Corollary 1 implies that
H1 is invariant with respect to the unitary group {Us, s ¥ Zd}. In addition
for any x, s ¥ Zd we have

Usux=ux+s (39)

where {ux, x ¥ Y0} is the orthonormal basis inH1 constructed by (28) from
the functions {ṽx1}. The representation (39) means that the subspace H1
is cyclic with respect to the unitary group of the space translations
{Us, s ¥ Zd}, so that H1 has the so-called ‘‘one-particle’’ structure, and it
could be called as a quasi-particle states space.
Corollary 3 implies that the spectra of the operators T1=T|H1 and

(T11+T12S) in R1 are the same. Using the estimates (36) and (37) and the
results (59) from the proof of Lemma 2 (see Appendix A) one could easy
obtain that the spectrum ofT1 lies in a Cb2-neighborhood of the point d1b:

s(T|H1 ) … (d1b−Cb2, d1b+Cb2)

with a constant C.
Finally using the construction (30) of the orthogonal complementH+

1

and the formulas (31), (32), (37), (38), (59) we have, that the spectrum of
the operatorT|H+

1
belongs to a C21b2-neighborhood of the origin:

s(T|H+
1
) … (−C21b2, C21b2)

with a constant C21 > 0. Thus all statements of the theorem concerning to
the first invariant subspace are proved.
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4. THE DECOMPOSITION OF THE SUBSPACEH+
1

In this section we get first a decomposition of the space H+
1 into two

subspaces invariant with respect toT and {Us}:

H+
1=H2 ÀH3 (40)

with s(T|H2 ) ’ b2 and s(T|H3 ) ’ b3. Then we find that

H2=H (1)
2 ÀH (2)

2 (41)

and prove that the spectra T on H (1)
2 and H (2)

2 respectively are not
overlapping. Thus the decomposition (9) will be constructed.

4.1. Decomposition (40)

By Corollary 4 the functions

k1C(s0)= C
CŒ: |CŒ| \ 2

(ER2+SS
g)−1/2C, CŒ (kCŒ(s0)−S

gkCŒ(s0)), (42)

marked by multi-indices C with |C| \ 2, form an orthonormal basis inH+
1 .

Let us consider a decomposition of H+
1 into an orthogonal sum of sub-

spaces, invariant with respect to the unitary group of the space translations
{Us, s ¥ Zd}:

H+
1=R1 1 À R1 2, (43)

where

R1 1={k1C(s0), |C|=2}, R1 2={k1C(s0), |C| \ 3}.

The decomposition (43) generates the matrix representation for the restric-
tion ofT onH+

1 :

T|H+
1
=RT

1
11 T112

T121 T122
S (44)

Lemma 3. For small enough b the operatorT1 −111 exists and

||T1 −111 || [
C1
b2
. (45)
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In addition

max{||T112 ||, ||T121 ||, ||T122 ||} [ C2b3 (46)

with constants C1, C2.

The proof is given in Appendix B.
Now we are again under conditions of Lemma 1 with q=O(b),

e=O(b). Consequently, the operator S1: R1 1 Q R1 2 with a small norm
||S1|| < Cb exists, and the unique invariant subspace H2 of the form (25)
could be constructed with the help of S1.
By Corollary 3 the operator T2=T|H2 has the same spectrum as the

operator (T111+T112S1) on R1 1. Using the estimates (45) and (46) and the
representations (66) and (67) for T111 (see Appendix B) one could easy see
that the spectrum ofT2 is concentrated in Cb3-neighborhoods of the points
d21b

2 and 12 d2b
2.

We denote byH3 the orthogonal complement toH2:

H3=H+
1 ıH2=(HŒıH1)ıH2.

Using the results of Corollary 4 we get that the spectrum of the operator
T|H3 is the same as the spectrum of the operator (T122−T121S1

g) on R1 2. The
bounds (45), (46) imply that

s(T|H3 ) … (−C22b
3, C22b3)

with a constant C22 > 0.

4.2. Decomposition (41)

Using the construction of H2 and Corollary 2 we have, that the
functions

k2C(s0)= C
CŒ: |CŒ|=2

(ER1 1+S
1 gS1)−1/2C, CŒ (k1CŒ(s0)+S1

gk1CŒ(s0)), (47)

marked by multi-indices C with |C|=2, form an orthonormal basis in H2.
Let us consider a decomposition ofH2 on two orthogonal subspaces:

H2=R2 1 À R2 2, (48)

where R2 1 is the linear span of the basis functions (47), marked by C with
supp C={x} … Y0 and k(x)=2; R2 2 is the linear span of the basis functions
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(47), marked by C with supp C={x, y} … Y0, y ] x and k(x)=k(y)=1.
The decomposition (48) implies as above the matrix representation for
T|H2 :

T|H2=
RT211 T212

T221 T222
S

Lemma 4. For small enough b and d21 ]
1
2 d2 the following repre-

sentations hold:

T211=
1
2 d2b

2ER2 1+L
2
1, T222=d

2
1b
2ER2 2+L

2
2. (49)

In addition

max{||L2 1 ||, ||L2 2 ||, ||T212 ||, ||T221 ||} [ Cb3 (50)

Here the constants d1, d2 were defined by (7), C is an absolute constant.

The proof is given in Appendix C.
Let us assume d21 <

1
2 d2. The case d

2
1 >

1
2 d2 could be considered by the

similar way. The representations (49) and the estimate (50) imply the exis-
tence of the inverse operatorsT2 −111 ,T2

−1
22 with the following norms:

||T2 −111 || [
2
d2b2

(1+C1b), ||T2 −122 || [
1
d21b

2 (1+C2b) (51)

with absolute constants Cj, j=1, 2. From (49)–(51) it follows that for small
enough b the conditions of Lemma 1 are fulfilled:

||T222 || · ||T2
−1
11 ||=q <

2d21
d2
+O(b) < 1 and e < Cb

with a constant C. Consequently we can find as above the operator
S2: R2 1 Q R2 2 and the subspace H (1)

2 of the form (25), ‘‘close’’ to R2 1 and
invariant with respect to the operatorsT and {Us}. By analogy with above
reasoning the spectrum of the operator T|H(1)

2
(which is the same as the

spectrum of the operator (T211+T212S2) in R2 1) occupies a C2b3-neighborhood
of the point 12 d2b

2:

s(T|H(1)
2
) … (12 d2b

2−C2b3,
1
2 d2b

2+C2b3). (52)

The orthogonal complement toH (1)
2 :

(H (1)
2 )

+=H2 ıH (1)
2 —H (2)

2 =R2 2 À (−S2 gR2 2), S2 g: R2 2 Q R2 1
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is also invariant with respect to T and {Us}. Using as above Corollary 4
with (49) and (50) we obtain that the spectrum of the operator T|H(2)

2
is in

a C3b3-neighborhood of the point d
2
1b
2:

s(T|H(2)
2
) … (d21b

2−C3b3, d
2
1b
2+C3b3), (53)

so that for small enough b the spectra (52) and (53) are not overlapping.
The theorem is proven.

APPENDIX A. THE PROOF OF LEMMA 2

In what follows we will exploit a general formula giving the expression
for moments by way of semi-invariants of the free field (see, for instance,
refs. 4 and 10). For small enough b and any bounded function F on W we
have:

OFPmb= C
.

m=0

bm

m!
C

Ox1, y1P, Ox2, y2P,..., Oxm, ymP
OF, sx1sy1 ,..., sxmsymPm0 . (54)

Let us consider the following cases.

1. If ||C||=||CŒ||=1 with supp C={x} ¥ Y1, supp CŒ={y} ¥ Y0, then
in the designations of the formulas (21) and (22) we have

t(C, CŒ) \ d(D̄)=||x−y|| \ 1,

and

(TkC, kCŒ) [ C1b(Cb) ||x−y||−1 (55)

with absolute constants C1, C. In addition using the formulas (11), (12),
and (54) we get

(Tṽx1(s0), ṽ
x
1(s0))=Oṽx1(s1) · ṽ

x
1(s0)Pmb

=bOv1(s1(x)) · v1(s0(x)), s0(x) s1(x)Pm0+O(b3)

=bOv1(s0(x)) ·s0(x)P
2
m0
+O(b2)

=b(m2−m1)+O(b2)=d1b+O(b2). (56)

2. If ||C||=1, ||CŒ|| \ 2, then t(C, CŒ) \ 2, and

(TkC, kCŒ) [ C2b2(Cb)t(C, CŒ)−2 (57)

with constants C2, C.
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3. If ||C|| \ 2, ||CŒ|| \ 2, then t(C, CŒ) \ 2, and

(TkC, kCŒ) [ C3b2(Cb)t(C, CŒ)−2 (58)

with constants C3, C.

To study the operator T−1
11 we notice that (55) and (56) imply the

following representation for the operatorT11:

T11=d1bER1+T211, ||T211 || [ C0b2, (59)

where ER1 is the identity operator in R1. Hence for small enough b the
operatorT−1

11 exists and it could be written as

T−1
11=

1
d1b
(ER1+T1) (60)

with ||T1 || [ C1b, C1 is an absolute constant. Now (60) implies the estimate
(36).
Finally using the same reasoning as in refs. 3 and 4, we could show

that the estimates (57) and (58) imply the convergence of the corresponding
series providing the estimates (37).
Lemma 2 is proven.

APPENDIX B. THE PROOF OF LEMMA 3

The proof is analogous to the proof of Lemma 2. It is based on the
bound (22) (under notations (20) and (21)) for matrix elements of T and
the reasoning from refs. 3 and 4. First we consider matrix elements of the
form

(T111k1C, k1CŒ)=(Tk1C, k1CŒ) with |C|=|CŒ|=2.

The set of all multi-indices C with |C|=2 is divided into two families:

c1={|C1 |=2: supp C1={x}, x … Y0, k(x)=2},

c2={|C2 |=2: supp C2={x, y} … Y0, x ] y, k(x)=k(y)=1}.
(61)

Let us consider the following cases.

1. If C ¥ c1 then using (54), (42), (11)–(13) and the estimates on the
operators S, Sg (see Section 3) we have:
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(Tk1C, k1C)=Ok1C(s1) ·k1C(s0)Pmb=Oṽx2(s1) · ṽ
x
2(s0)Pmb+O(b3)

=
b2

2
Ovx2(s1) · v

x
2(s0), s0(x) s1(x), s0(x) s1(x)Pm0+O(b

3)

=
b2

2
Ovx2(s0) ·s

2
0(x)P

2
m0
+O(b3)=

d2
2

b2+O(b3). (62)

2. If C, CŒ ¥ c1, C ] CŒ, then t(C, CŒ) \ 4 and the cluster estimate
(22) implies that

(Tk1C, k1CŒ) [ L(Cb)4. (63)

3. If C ¥ c2, then as above in the case 1 we have:

(Tk1C, k1C)=Ok1C(s1) ·k1C(s0)Pmb
=Oṽx1(s1)ṽ

y
1(s1) ṽ

x
1(s0)ṽ

y
1(s0)Pmb+O(b3)

=b2Ovx1(s1) v
y
1(s1) v

x
1(s0)v

y
1(s0), s0(x) s1(x), s0(y) s1(y)Pm0

+O(b3)

=b2Ovx1(s0) ·s0(x)P
4
m0
+O(b3)=d21b

2+O(b3). (64)

4. If C, CŒ ¥ c2, C ] CŒ or C ¥ c1, CŒ ¥ c2, then the cluster estimate
(22) implies

(Tk1C, k1CŒ) [ B1(Cb)3. (65)

Taking into account the expressions (20) and (21) for t(C, CŒ) we obtain
from (62)–(65) the following representation forT111:

(T111)C, CŒ=a(C) dC, CŒ+MC, CŒ, |C|=|CŒ|=2, (66)

where

a(C)=˛d22 b2, if C ¥ c1,

d21b
2, if C ¥ c2,

(67)

andM is an operator in R1 1 with a small norm: ||M|| [ Cb3, C is a constant.
Consequently the operatorT1 −111 exists and

||T1 −111 || [
(1+C21b)

b2
max 3 2

d2
,
1
d21
4

with a constant C21. The estimate (45) is proven.
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To obtain the bound (46) we use the representation (42) for the func-
tions k1C, the estimates on the norms ||S||, ||Sg|| and the cluster estimate
(22) on the matrix elements (Tk1C, k1CŒ), when |C|=2, |CŒ| \ 3 or |C| \ 3,
|CŒ| \ 3. We have in both cases

t(C, CŒ) \ 3,

so that finally the estimate (46) follows from (20) and (21).
Lemma 3 is proven.

APPENDIX C. THE PROOF OF LEMMA 4

Using the representation (47) and the estimates on the norms of the
operators S1, S1 g it is easy to see, that the functions k2C, |C|=2, are a
‘‘small’’ perturbation of the corresponding functions k1C, |C|=2. Conse-
quently the results (62)–(65) of Appendix B imply that if C ¥ c1, then

(T2 11k2C, k2C)=(Tk1C, k1C)+O(b3)=1
2 d2b

2+O(b3); (68)

if C ¥ c2, then

(T2 22k2C, k2C)=(Tk1C, k1C)+O(b3)=d21b
2+O(b3); (69)

if C ] CŒ, then

(Tk2C, k2CŒ) [ B(Cb)t(C, CŒ) with t(C, CŒ) \ 3, (70)

B, C are absolute constants.
Now the representations (49) follows from (68)–(70). The estimates

(50) could be proven by the similar manner as above in Appendix B.
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